Part Number Hot Search : 
HPR1015 FDZ203N 01301 AU943205 BLF04 2SK2883 SC018M LF156N
Product Description
Full Text Search
 

To Download IRLR8721PBF-1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet   power mosfet notes   through  are on page 12 absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ 10v i d @ t c = 100c continuous drain current, v gs @ 10v a i dm pulsed drain current p d @t c = 25c maximum power dissipation p d @t c = 100c maximum power dissipation linear derating factor w/c t j operating junction and c t stg storage temperature range thermal resistance parameter typ. max. units r jc junction-to-case ??? 2.3 r ja junction-to-ambient (pcb mount)  ??? 50 c/w r ja junction-to-ambient ??? 110 max. 65  46  260 20 30 w -55 to + 175 65 0.43 33 
 d s g d-pak 
   features benefits industry-standard pinout d-pak ? multi-vendor compatibility compatible with existing surface mount techniques easier manufacturing rohs compliant, halogen-free environmentally friendlier msl1, industrial qualification increased reliability     
   
   
      ! "# v ds 30 v r ds(on) max (@v gs = 10v) 8.4 q g (typical) 8.5 nc i d (@t c = 25c) 65 a m form quantity IRLR8721PBF-1 d-pak tape and reel 2000 irlr8721trpbf-1 base part number package type standard pack orderable part number

     
   
   
      ! "# s d g static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 30 ??? ??? v ? / . 1 / () . . 10.1 11. () 1. 1. . () . / 1.0 a ??? ??? 150 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 gfs forward transconductance 46 ??? ??? s q g total gate charge ??? 8.5 13 q gs1 pre-vth gate-to-source charge ??? 1.9 ??? q gs2 post-vth gate-to-source charge ??? 1.2 ??? nc q gd gate-to-drain charge ??? 3.4 ??? q godr gate charge overdrive ??? 2.0 ??? see fig. 16 q sw switch charge (q gs2 + q gd ) ??? 4.6 ??? q oss output charge ??? 7.9 ??? nc r g gate resistance ??? 2.3 3.8 () . 0 () . . 100 0 110 avalanche characteristics parameter units e as single pulse avalanche energy  mj i ar avalanche current  a e ar repetitive avalanche energy  mj diode characteristics parameter min. typ. max. units i s continuous source current ??? ??? 65  a (body diode) i sm pulsed source current ??? ??? 260 (body diode)  v sd diode forward voltage ??? ??? 1.0 v t rr reverse recovery time ??? 17 26 ns q rr reverse recovery charge ??? 24 36 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) mosfet symbol v gs = 4.5v, i d = 20a  ??? v gs = 4.5v typ. ??? ??? i d = 20a v gs = 0v v ds = 15v t j = 25c, i f = 20a, v dd = 15v di/dt = 300a/ s  t j = 25c, i s = 20a, v gs = 0v  showing the integral reverse p-n junction diode. v ds = v gs , i d = 25 a v ds = 24v, v gs = 0v v ds = 24v, v gs = 0v, t j = 125c r g = 1.8 = 1 = 0 = 1 = 0 = 1 = .  i d = 20a v ds = 15v conditions v gs = 0v, i d = 250 a reference to 25c, i d = 1ma v gs = 10v, i d = 25a  v gs = 20v v gs = -20v conditions 6.5 see fig. 14 max. 93 20 ? = 1.0mhz

   "  
   
   
      ! "# fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 10v 8.0v 5.0v 4.5v 4.0v 3.5v 3.0v bottom 2.7v 60 s pulse width tj = 25c 2.7v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.7v 60 s pulse width tj = 175c vgs top 10v 8.0v 5.0v 4.5v 4.0v 3.5v 3.0v bottom 2.7v 0 2 4 6 8 10 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 15v 60 s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 25a v gs = 10v

     
   
   
      ! "# fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0246810 q g , total gate charge (nc) 0.0 1.0 2.0 3.0 4.0 5.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v v ds = 15v v ds = 6.0v i d = 20a 0.0 0.5 1.0 1.5 2.0 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) operation in this area limited by r ds (on) tc = 25c tj = 175c single pulse 100 sec 1msec 10msec

   $  
   
   
      ! "# fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. threshold voltage vs. temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 10 20 30 40 50 60 70 i d , d r a i n c u r r e n t ( a ) limited by package -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 0.5 1.0 1.5 2.0 2.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 25 a 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.3501 0.000072 1.1877 0.001239 0.7635 0.010527 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri

   %  
   
   
      ! "# fig 13. gate charge test circuit fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 12c. maximum avalanche energy vs. drain current r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v d.u.t. v ds i d i g 3ma v gs .3 f 50k .2 f 12v current regulator same type as d.u.t. current sampling resistors + - 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 300 350 400 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 1.1a 1.4a bottom 20a v ds 90% 10% v gs t d(on) t r t d(off) t f &  
 1      0.1 %   &    '( &  + - &  fig 14a. switching time test circuit fig 14b. switching time waveforms

   )  
   
   
      ! "# fig 15. typical avalanche current vs. pulsewidth 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 1.0e+00 1.0e+01 1.0e+02 tav (sec) 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) duty cycle = single pulse allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse)

   *  
   
   
      ! "# fig 15. 
  

  for n-channel hexfet   power mosfets       ?       ?   ?         p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period  &  +$&
, - ,..   + - + + + - - -      &  ? !"   # $  ?  !   %  &'&& ?     #     (( ? &'&& ) !  '     fig 16. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr

   /  
   
   
      ! "# control fet                 !  " # "$
     #  " % #& '(% # )   *+ '(% !#!)  !  $
"  ), p loss = p conduction + p switching + p drive + p output this can be expanded and approximated by; p loss = i rms 2 r ds(on ) ( ) + i q gd i g v in f ? ? ? ? ? ? + i q gs 2 i g v in f ? ? ? ? ? ? + q g v g f () + q oss 2 v in f ? ? ? ? ( #-!!#"  #"  
*+ '(#$ "     !     #  !    !##   *+ '( # $ (       !  ! %" 
#"  %    .$ "  #! !# )   #      #   ###!   #   $*/"    #!" $ "  ! !#! !  *+ '(#!) )$ !0"   # )        ## 1 2  3&  #&  !# ) !)! !$ synchronous fet the power loss equation for q2 is approximated by; p loss = p conduction + p drive + p output * p loss = i rms 2 r ds(on) () + q g v g f () + q oss 2 v in f ? ? ? ? ? + q rr v in f ( ) *dissipated primarily in q1. for the synchronous mosfet q2, r ds(on) is an im- portant characteristic; however, once again the im- portance of gate charge must not be overlooked since it impacts three critical areas. under light load the mosfet must still be turned on and off by the con- trol ic so the gate drive losses become much more significant. secondly, the output charge q oss and re- verse recovery charge q rr both generate losses that are transfered to q1 and increase the dissipation in that device. thirdly, gate charge will impact the mosfets? susceptibility to cdv/dt turn on. the drain of q2 is connected to the switching node of the converter and therefore sees transitions be- tween ground and v in . as q1 turns on and off there is a rate of change of drain voltage dv/dt which is ca- pacitively coupled to the gate of q2 and can induce a voltage spike on the gate that is sufficient to turn the mosfet on, resulting in shoot-through current . the ratio of q gd /q gs1 must be minimized to reduce the potential for cdv/dt turn on. power mosfet selection for non-isolated dc/dc converters figure a: q oss characteristic

     
   
   
      ! "# 
  
 
 412 note: for the most current drawing please refer to ir website at http://www.irf.com/package/ int ernat ional ass embled on ww 16, 2001 in the assembly line "a" or note: "p" in ass embly line position example: lot code 1234 t his is an irfr120 wi t h as s e mb l y i ndi cates "l ead- f r ee" product (optional) p = de s i gnat e s l e ad-f r e e a = as s e mb l y s i t e code part number we e k 16 dat e code year 1 = 2001 rectifier int ernat ional logo lot code assembly 34 12 irfr120 116a line a 34 rectifier logo irfr120 12 as s e mb l y lot code year 1 = 2001 dat e code part number we e k 16 "p" in ass embly line pos ition indicates "l ead-f r ee" quali fi cation to the cons umer - level p = de s i gnat e s l e ad-f r e e product qualified to the consumer level (optional)

     
   
   
      ! "# 
    1412 note: for the most current drawing please refer to ir website at http://www.irf.com/package/ notes : 1. outline conforms to eia-481. 16 mm 13 inch tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( 7.9 ( 12.1 ( .476 ) 11.9 ( .469 ) feed direction notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541.

     
   
   
      ! "#  repetitive rating; pulse width limited by max. junction temperature.  starting t j = 25c, l = 0.47mh, r g = 25 , i as = 20a.  pulse width 400 s; duty cycle 2%.  calculated continuous current based on maximum allowable junction temperature. package limitation current is 50a.  when mounted on 1" square pcb (fr-4 or g-10 material). for recommended footprint and soldering techniques refer to application note #an-994. 
moisture sensitivity level d-pak ms l 1 rohs c ompliant yes qualification information ? qualification level industrial (per jedec jes d47f ?? guidelines) ? qualification standards can be found at international rectifier?s web site: http://www.irf.com/product-info/reliability ?? applicable version of jedec standard at the time of product release ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa to contact international rectifier, please visit http://www.irf.com/whoto-call/


▲Up To Search▲   

 
Price & Availability of IRLR8721PBF-1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X